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Abstract. In this paper we examine how the predictions of conformal invariance can be widely exploited
to overcome the difficulties of the density-matrix renormalization group near quantum critical points.
The main idea is to match the set of low-lying energy levels of the lattice Hamiltonian, as a function of
the system’s size, with the spectrum expected for a given conformal field theory in two dimensions. As in
previous studies this procedure requires an accurate targeting of various excited states. Here we discuss how
this can be achieved within the DMRG algorithm by means of the recently proposed Thick-restart Lanczos
method. As a nontrivial benchmark we use an anisotropic spin-1 Hamiltonian with special attention to the
transitions from the Haldane phase. Nonetheless, we think that this procedure could be generally valid in
the study of quantum critical phenomena.

PACS. 75.40.Mg Numerical simulation studies – 05.10.Cc Renormalization group methods
– 75.10.Pq Spin chain models

1 Outline and general facts

The density-matrix renormalization group (DMRG) was
invented by White in the early 90’s and nowadays is recog-
nized as one of the most accurate and efficient numerical
techniques in the study of correlated quantum systems [1].
A number of authors is still contributing to its develop-
ment for new applications and one of the major points is
the dimensionality of the system. While for 1D lattices
of spins or electrons there exist several firm results, a
generally accepted DMRG scheme in 2D is still lacking
despite numerous proposals. However, even for 1D sys-
tems, it is known that the DMRG encounters some dif-
ficulties in reproducing the physics of quantum critical
points. This is because one wants, at the same time, to
explore larger and larger system sizes and to maintain
a good numerical precision in order to locate the points
where the excitation gap closes and to compute the associ-
ated critical exponents. If the quantum chain has q states
per site, the dimension of the full Hilbert space for L sites
grows exponentially as qL. The main approximation of the
DMRG is the truncation to the space spanned by the M
eigenvectors of the block density matrix, ρb, correspond-
ing to the M largest eigenvalues. The problem is that,
close to criticality, the system experiences fluctuations on
very large scales and (as will be discussed in Sect. 4) the
spectrum of ρb decays more slowly than in noncritical
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cases. Hence if one considers, as a first indicator of the
accuracy of the method, the sum of the discarded weights
WM =

∑
j>M wj , then this different decay implies that

the minimal M to reach a prescribed threshold is gener-
ally larger when the system is close to a critical point.
To be more specific, Legeza and co-workers [2,3] found
that the error in the ground state (GS) energy due to a
finite M , at a fixed L, is simply:

δEGS
L (M) = EGS

L (M) − EGS
L (∞) ∝ WM . (1)

Now, if we admit that the precision for the first excited
state follows a similar trend, then there will be a regime,
close to the critical point and/or for large L (see Sect. 2),
where WM becomes larger than the excitation gap itself.
In addition, Figures 3 and 5 of reference [2] indicate two
other important features (at least for the Ising model in
a transverse field). First, at criticality the error in the
energy at fixed M increases appreciably with the chain’s
length, and again we see that fixing M once for all, while
taking larger and larger values of L, is not a completely
safe procedure. The second, and more important point is
that the proportionality in equation (1) holds only after
a few finite-system iterations have been performed. Using
Legeza’s terms, these are necessary to cancel the so-called
environment error that dominates at sufficiently small L.
The crossover from the environment-dominated regime to
the truncation-dominated one is marked by a character-
istic size, L∗(M), which increases with increasing M . In
Section 5 we will argue that a similar characteristic length
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emerges in critical spin-1 chains too. Moreover, in our
opinion, the results of Andersson et al. [4] regarding a
critical chain of free spinless fermions, or equivalently a
spin-1/2 XX model, point somehow in the same direction.
Even if the system is known to be rigorously critical, the
effect of a finite number of DMRG states is to introduce a
fake correlation length, that grows as M1.3. The interplay
between an analogous DMRG length and the true cor-
relation length near the critical temperature of classical
2D systems is also discussed in [5].

We believe that the considerations above indicate that
the critical behavior of (1D) quantum systems cannot
be “simply” approached by using the computational re-
sources to reach larger and larger values of L by means of
the infinite-system DMRG, as it is sometimes done (see,
for instance [6], and Refs. therein). Rather, we prefer to
exploit as much as possible the consequences of confor-
mal invariance. In many cases, indeed, we expect that
the low-energy physics of a 1D quantum system near its
critical points is described by a suitable conformal field
theory (CFT) in (1+1) dimensions [7–10]. Then, if the
system under study has to be critical, we imagine that
there will be a scale-invariant effective continuum model
that captures its universal features. In 2D the key point is
that all these universality classes are encompassed in the
framework of CFT. In the last twenty years the numer-
ous exact results in this area have been organized into an
elegant framework, which is however too vast for our pur-
poses. Therefore, in Section 2 we sketch only the points of
contact with our analysis and refer to [11] for a compre-
hensive guide and to [12] for a shorter review on finite-size
effects.

However, for a correct interpretation of the
DMRG data, and a comparison with a suitable CFT,
an accurate calculation of the first excited states at
varying L is needed. The targeting of more than one state
was proposed by White himself [13] and used by different
authors in subsequent papers. A recent comment on this
problem can be found in [14]. One of the aims of our work
is to test, in connection with the DMRG, the recently
proposed Thick-restart Lanczos method [15] to handle a
sufficient number of excited states.

2 Identification of the CFT through
the finite-size spectrum

The requirement of scale invariance in 2D is sufficiently
strong to allow (under general assumptions) a classifica-
tion of the states of a quantum field theory in terms of the
irreducible representations of the Virasoro algebra gener-
ated by a set of operators satisfying:

[Lm, Ln] = (m− n)Lm+n +
c

12
δm+n,0(m3 −m), m, n ∈ Z.

(2)
(As is customary in CFT, the statements and equations
regarding the holomorphic part should always be suitably
repeated for the antiholomorphic part, denoted by over-
bars). For unitary theories the central charge of the alge-
bra is either c ≥ 1, or can be chosen as one of the values

c = 1 − 6/p(p + 1) (p = 2, 3, . . . ), each one corresponding
to a so-called minimal model. In the latter case, once a
c < 1 is given, one can decompose the Hilbert space into a
finite number of irreducible representations of (2) labeled
by the eigenvalues of the generator L0:

L0|∆〉 = ∆|∆〉, ∆ =
[(p + 1)r − ps]2 − 1

4p(p + 1)
, (3)

with 1 ≤ s ≤ r ≤ p − 1 ∈ Z. More specifically, the pri-
mary states |∆〉 are annihilated by Lm with positive m
and each one of them generates a conformal family that
contains all the states obtained through the application of
the negative-integer generators |∆〉km = (L−m)k|∆〉 (the
secondary or descendant states). It can be seen, as a con-
sequence of the Virasoro algebra, that these are in turn
eigenvectors of L0:

L0|∆〉km = (∆ + mk)|∆〉km. (4)

In principle, all the correlation functions of the theory can
be reduced to correlators of primary operators. Moreover,
the operators L0 and L̄0 play a special physical role as
can be seen by considering a conformal transformation
that maps the plane onto an infinite cylinder, whose cir-
cumference of length L represents the space axis with pe-
riodic boundary conditions (PBC). Then the energy and
momentum operators are simply expressed as:

HCFT =
2πv

L

[
L0 + L̄0 − c

12

]
, Q =

2π

L

[
L0 − L̄0

]
. (5)

Actually, the pre-factor v has been inserted “by hand”
in view of the identification of the (critical part of the)
spectrum of the original quantum Hamiltonian with the
values predicted by the CFT construction. More specifi-
cally, the ground state is simply identified with |vac〉, for
which both L0 and L̄0 have null eigenvalues. Thus, the
finite-size corrections to the vacuum energy are:

Evac
L = −πcv

6L
, (6)

whereas the excited states follow from the construction of
equations (3) and (4):

EL(∆, m, k; ∆̄, m̄, k̄)−EGS
L =

2πv

L
[∆+∆̄+mk+m̄k̄]. (7)

It is important to recall that the sum of the eigenvalues
of L0 and L̄0, that is the last term in square brackets
dO ≡ (∆ + ∆̄ + mk + m̄k̄), is called the scaling dimension
because it enters the algebraic decay of the correlation
function of the corresponding operator O:

〈O(0, 0)O(z, z̄)〉 ∼ z−2(∆+mk)z̄−2(∆̄+m̄k̄)|z=z̄=r = r−2dO .
(8)

In the language of renormalization group (RG) theory, the
operators are seen to be relevant when dO < 2, irrelevant
when dO > 2 and marginal when the scaling dimension is
exactly 2 (in 2D). The exponents, yi, of the scaling fields
near a fixed point of the RG flow are simply given by
yi = 2 − di.
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The edge case c = 1 opens the way to unitary CFT
with an infinite number of primary operators. It is re-
lated to certain topological constructions of a free bosonic
field [16], and the operators (or the associated states) can
be further classified in terms of an Û(1) Kac-Moody al-
gebra. Here we won’t enter into more details since ref-
erence [17] is specifically devoted to the study of such
c = 1 CFT starting from the spin-1 Hamiltonian (12),
using just the method explained in the present paper. Fi-
nally, when c > 1 we have a continuum of allowed values
and the complexity of the problem in its generality simply
forbids us to go on with the discussion of classified cases.
We refer to the literature on CFT for general discussions
(see, for example, [11,16]). We will content ourselves with
the observation that, at least from an operative point of
view, in many cases equations (5–8) should remain valid
once the labels ∆, ∆̄ and the secondary indices are prop-
erly interpreted in terms of wider symmetries that have
to be investigated case by case.

The first problem is, of course, that one does not know,
a priori, which is the CFT that has to be invoked. A
great step towards the answer to this question is made
if one knows the central charge of the theory, c, that
characterizes the underlying Virasoro algebra. Apart from
equation (2) and the operator product expansion of the
stress-energy tensor, the central charge appears explicitly
in the size-dependence of the GS energy density:

EGS
L

L
= e∞ − πcv

6L2
, (9)

which is nothing but equation (6) plus an infinite-size
term, which is absent in the formal CFT but has a defi-
nite value for a given quantum Hamiltonian. If the quan-
tum chain has open boundary conditions, which are gen-
erally better for DMRG convergence, equation (9) should
be modified in two ways [18,19]. The denominator be-
comes 24L2 and a boundary term B/L should be added,
with a non-universal pre-factor B. This term introduces
a slower convergence of the GS to the thermodynamic
limit (TL) and, at least in this sense, PBC may be more
useful for finite-size scaling (FSS) [20].

In quantum field theory the second term of (9) ac-
counts for the Casimir effect [18], while in statistical sys-
tems it gives the correction to the free energy at small
temperatures (L playing the role of 1/T [21]). In our case,
equation (9) is the starting point to discover the CFT
that is appropriate for the problem under consideration.
Indeed, having good estimates of EGS

L at various L, we can
first best-fit e∞ and cv. Then, if we have reasons to believe
that one of the states has scaling dimension 1 (Eqs. (7)
and (8)), then we can calculate:

v =
∆EL(d = 1)

2π/L
. (10)

If we now interpret ∆k = 2π/L as the quantum of mo-
mentum for a chain of length L, then equation (10) looks
like a discrete derivative of the energy vs. momentum rela-
tion, that is, a group velocity. This somehow explains the

term “spin velocity”, which is widely used in the literature
of quantum spin chains independently of the real nature
of the excitations. Again, the exact form of equation (10)
may vary depending on the boundary conditions. In spin
chains with twisted boundary conditions the general re-
lation in equation (7) remains valid and it’s the scaling
dimensions of the operators that turn out to depend on
the twisting angle [22]. With open boundary conditions,
according to reference [18] the essential modification is the
replacement of L by 2L. This justifies the coefficient of L2

in equation (9) and equation (58) of [19], that looks like
equation (10) with a quantum of momentum ∆k = π/L.

Summing up, with a combined usage of equations (9)
and (10) we can calculate c from the numerical data of the
first excited levels for different chain’s lengths. Then the
identification may fall into two cases. For c < 1, unitarity
demands that the values of the central charge are quan-
tized, according to the list of minimal models. In this case,
a small discrepancy from one of these values is likely to
be related to numerical uncertainties. The matter becomes
more complicated when one finds a numerical c larger than
one, in which case unitarity by itself is not enough to pro-
vide a quantization condition. The symmetries of the lat-
tice Hamiltonian in this case are of great help because we
expect them to be present also in the corresponding con-
tinuum model. Then one may focus on the known 2D field
theories whose actions are invariant under both this sym-
metry group and under conformal transformations. Be-
side that, when one studies a novel and computationally
demanding system it may be very useful to get a first in-
sight of the CFT by performing a finite-size analysis of
DMRG data obtained with the infinite-system algorithm
and open boundary conditions, as in [19]. Nonetheless, we
discourage a blind usage of the infinite-system DMRG to
conclude (as in Ref. [6]) that the numerical discrepancies
from the expected values are to be ascribed to nontrivial
effects beyond the CFT framework. If in doubt, the final
answer should always come from a careful refinement us-
ing finite-system numerical data, in a range of L where
the scaling behavior is visible but the accuracy is not cor-
rupted significantly by the DMRG truncation error.

In any case, what we are actually performing is a self-
consistent guess of the underlying CFT. In principle, this
allows an analytical calculation of the scaling dimensions,
d�, of all the operators associated with the excited states.
The corresponding energy gaps, here formally indexed
by �, scale according to equation (7):

∆E�
L =

2π

L
vd�. (11)

Matching the numerical spectrum of a certain number of
levels with the structure encoded in the scaling dimensions
of equation (11) represents a particularly stringent test of
the hypothesis made.
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3 Model and details of the implementation:
multi-target method

Following our previous paper [17] we have considered the
following spin-1 Hamiltonian:

H =
∑

j

[
1
2

(
S+

j S−
j+1 + S−

j S+
j+1

)
+ λSz

j Sz
j+1 + D(Sz

j )2
]

(12)
for a chain of L spins which includes both an Ising-like
and a single-ion anisotropy term, with coefficients λ and D
respectively. Formally we have set � = 1 and the overall
coupling constant J = 1 so that every quantity turns out
to be dimensionless and we have imposed PBC: Sj+L =
Sj ∀j = 1, . . . L. See [17,23–27] for a discussion of the
various phases in the λ-D diagram.

The algorithm that we have implemented for DMRG
calculations follows rather closely the lines indicated by
White in his seminal papers [13,28]. As regards our spe-
cific application, we should outline the following points.

The superblock geometry was chosen to be [Br •|Br′
ref•]

with PBC, where Br′
ref is the (left ↔ right) reflection of

block Br′
with r′ sites. The rationale for adopting this

configuration is that, being effectively on a ring, the two
blocks are always separated by a single site, for which
the operators are small matrices that are treated exactly
(no truncation) [13]. In this way we expect a better preci-
sion in the correlation functions calculated by fixing one
of the two points on these sites and moving the other one
along the block. In a recent application of the DMRG to
quantum chemistry calculations [3] it has been pointed
out that the configuration of the superblock may be one
of the major points of optimization of the method for fu-
ture applications. As regards the choice of the boundary
conditions, we are aware of the fact that with open con-
ditions a smaller M is generally required and that in cer-
tain cases (i.e. Gaussian transitions) the introduction of
twisted boundary conditions is a clever trick to identify
the critical point using numerical data on relatively small
systems [22,27,29,30]. Nevertheless, in our set of calcula-
tions we have adopted PBC to get rid of the edge effects
that in some cases mask almost all the information con-
tained in very short-ranged (string) correlation functions.
Moreover, we are primarily interested in the transitions
from the Haldane phase, for which it is known that the
finite-size GS acquires a fourfold degeneracy due to the
two free effective spins at the ends of the chain [26]. With
PBC instead, one has a unique finite-size GS so that the
convergence of the Lanczos procedure is better and the
analysis of the numerical gaps is simpler.

We used the finite-system algorithm with three iter-
ations. This prescription should ensure the virtual elim-
ination of the so-called environment error [2], which is
expected to dominate in the very first iterations for L <
L∗(M) (see below). In fact, it is only after a suitable num-
ber of such sweeps that we may expect that the error in
the energies has been minimized (for a given L and M)
and equation (1) holds true. Normally the correlations are

computed at the end of the third iteration, once the best
approximation of the GS is available.

Dealing with quantum spin chains, we always exploit
the conservation of the z-component of the total spin, Mz.
Typically we are interested in nonmagnetic GS’s, that is,
with Mz = 0. In every studied case the correlations have
been calculated targeting only the lowest-energy state
within this sector. However, in order to analyze the energy
spectrum, we had to target the lowest-energy state(s) in
the other sectors |Mz| = 1, 2, . . . and/or target also a few
excited states within the Mz = 0 sector, depending on the
phase under study. The standard Lanczos algorithm gives
with enough precision the ground state of the system, but
it is not so accurate for the excited states. Moreover, as a
consequence of a general theorem on tridiagonal symmet-
ric matrices, we can’t have degenerate states from this
method. So the algorithm must be modified to allow the
building of the reduced density matrix over the block as a
mixture of the matrices corresponding to each target state.
While for the latter point we are not aware of any specific
“recipe” other than that of equal weights, the implemen-
tation of the multi-target diagonalization routine within
our DMRG code is based on the Thick-restart Lanczos
method recently introduced by Wu and Simon [15]. In
principle, the strategy used here does not rely on a partic-
ular algorithm to extract a group of eigenvalues of the su-
perblock Hamiltonian. The methods commonly used so far
are the Davidson-Liu and the block Lanczos. Our choice
of the Thick-restart Lanczos was based on the intention
of testing and exploiting the stability of the method, as
claimed by the authors [15]. Moreover, its implementation
is a simple extension of the standard Lanczos procedure,
as described in Appendix A.

Once Mz is fixed, in a given run we wish to follow si-
multaneously the first levels |Mz; b〉 with b=0, 1, 2,. . . ,t
(the GS being identified by (Mz = 0; b=0)). Then, as in
the conventional Lanczos scheme, we have to iterate until
the norms of the residual vectors and/or the differences
of the energies in consecutive steps are smaller than pre-
scribed tolerances (10−9−10−12 in our calculations). The
delicate point to keep under control is that, once the low-
est state |Mz; 0〉 is found, if we keep iterating searching
for higher levels the orthogonality of the basis may be lost,
just because the eigenvectors corresponding to these lev-
els tend to overlap again with the vector |Mz; 0〉. As a
result, the procedure is computationally more demanding
because one has to re-orthogonalize the basis from time to
time. We have seen that this part takes a 10–20% of the
total time spent in each call to the Lanczos routine. We
have also observed that if this re-orthogonalization is not
performed, one of the undesired effects is that the excited
doublets (typically due to momentum degeneracy) are not
computed correctly. More specifically, it seems that while
the two energy values are nearly the same in the asymmet-
ric stages of the sweeps, when the superblock geometry be-
comes symmetric (r = r′ in the notations of the preceding
point) the double degeneracy is suddenly lost in a spurious
way. This is in line with the results of reference [3], where
the error in the energy is kept under control by means of
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a dynamically-adjusted M and the configurations that re-
quire a larger number of DMRG states are just those near
the symmetric one.

4 Dependence on the number of DMRG
states

As discussed in the introduction of Section 1 the choice of
the number of optimized states with respect to the chain
length L is the crucial point to address in any DMRG
calculation. Being conscious that the energy accuracy is
not an exhaustive indicator, from equation (1) one should
try, at least, to keep the discarded weight WM as small as
possible. This quantity, in turn, is related to the decay of
the density matrix eigenvalues {wj} as a function of the
index j:

WM =
∑

j>M

wj =
∑

j

Djzj , (13)

where the last equality is a simple rewriting in terms of
the degeneracies Dj and of the distinct eigenvalues zj . The
issue appeared to be important from the very beginning
and is the core to the success of the DMRG. In [13,31]
it was argued that the convergence of the GS energy of a
gapped or a spatially finite system is roughly exponential
in M :

δEL ∝ e−M/M∗(L), (14)

with a superimposed step-like behavior, probably related
to the successive inclusion of more and more complete spin
sectors. It is also generally believed that this exponential
decay becomes slower (possibly algebraic) when a critical
point is approached. At this stage it is interesting to recall
that for integrable systems the spectrum of ρb can be de-
termined exactly. In fact, it is known [5,9] that for a quan-
tum chain the infinite-size block density matrix is given by
ρb = χ4, where χ is the corner transfer matrix of the asso-
ciated 2D classical statistical system. This statement has a
wide generality, with the exception of critical cases where
the boundary effects may have some role and are expected
to affect the tails of the distribution [32]. For integrable
systems a further step can be made: χ is expressed as
the exponential of a pseudo-Hamiltonian, K, that involves
the same local operators of the Hamiltonian (e.g. Sα

j Sα
j+1)

but with coefficients depending on the site index j. More-
over, the spectrum of K can be determined exactly and,
typically, the eigenvalues turn out to be equally spaced.
Therefore the distinct eigenvalues of ρb decay as:

zj ∝ Zj , Z = e−ε, (15)

ε/4 being the level spacing of −K. These predictions have
been explicitly verified for the Ising model in a transverse
field [9] and for the XXZ spin-1/2 Heisenberg chain [9,10].

Now we shall try to elucidate this topic in the case
of critical spin-1 systems using the Hamiltonian of equa-
tion (12). At (λ = 1, D = 0) one has an isotropic
anti-ferromagnetic (AF) Heisenberg chain of integer spin,
whose theoretical interest comes from what is now known

as Haldane’s conjecture [33], that predicts a genuine quan-
tum behavior with a finite energy gap in the excitation
spectrum. This has to be contrasted with what happens
in half-odd-integer cases that are gapless (i.e. critical) in
the thermodynamic limit. Another important theoretical
contribution is the mapping between spin chains and re-
stricted solid-on-solid models proposed by den Nijs and
Rommelse [34]. Qualitatively, the Haldane phase is inter-
preted as a spin-liquid, in the sense that the effective par-
ticles – the spin state |0〉 represent an empty site and |±〉
represent a particle with spin up or down – are position-
ally disordered but carry anti-ferromagnetic order. In the
quantum states that contribute to the GS, this order is
hidden by arbitrarily long strings of |0〉’s but can be mea-
sured by the string order correlators [26,34]:

Oα
S (j, k) ≡ −

〈

Sα
j exp



iπ
k−1∑

n=j+1

Sα
n



Sα
k

〉

, (16)

(the expectation value being taken on the GS) and their
asymptotic order parameters, Oα

S ≡ lim|j−k|→∞ Oα
S (j, k).

Beside that, nowadays there exist several experimen-
tal realizations of these anisotropic spin-1 chains: to the
author’s knowledge, RbNiCl3 [23] and Y2BaNiO5 [35,36]
are examples of pure Haldane systems, CsNiFe3 is
a ferromagnet (λ = −1) with appreciable single-ion
anisotropy (D � 0.4) and CoCl2 2 H2O behaves as
an Ising ferromagnet (|λ| 
 1) with high easy-axis
anisotropy (D � −5) [24,37]. The so-called NENP [38,39]
and NENC [40] represent, respectively, small-D (�0.2)
and large-D (�7.5) antiferromagnets with easy-plane
anisotropy.

In order to study the convergence of truncation er-
rors close to criticality we have selected a pair of rep-
resentative points in the phase diagram. In the origin
(λ = 0, D = 0), where a Berezinskii-Kosterlitz-Thouless
(BKT) transition is expected [41], we have the spin-1 ana-
logue of the XX spin-1/2 model used in reference [4] to
examine the effect of a finite M on a quantum critical
system. The second point that we will examine in this sec-
tion is (λ = 1, D = 0.95) because from references [17,30]
we know that it lies very close to the line of transition
from the Haldane phase to the so-called large-D phase. In
the following numerical analysis these two points will be
denoted by XX and H-D, respectively. The results can be
thought as the critical counterpart of the ones presented
in [10] for an isotropic spin-1 Heisenberg chain.

For the H-D point we have computed the first ex-
cited state in the sectors with Mz = 0, 1 for L =
16, 20, 24, 32, 48 and 64, using M = 81, 162, 243, 324
and 405 DMRG states for each case. For the XX point,
we have monitored the same states for the same values
of M using also L = 28. The exponential decay of equa-
tion (14) seems to be adequate in all the cases, as shown
in Figure 1. For every fixed L we best-fit the energy-vs.-M
data and read off the characteristic values M∗(L), repre-
sented in Figure 2. Of course, the larger L is the larger M∗
is, and it seems that the curves do not saturate indicating,
as is reasonable, that a finite M is not enough to describe
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Fig. 1. Energies of the GS and of the first excited states within
Mz = 0, 1 at the points XX and H-D (see text). The symbols
represent DMRG values obtained with L = 32 and an increas-
ing number of DMRG states while the continuous lines are
exponential fits. For clarity reasons, the offsets reported in the
legend have been added.

Fig. 2. Exponential factor M∗(L) (Eq. (14)) for the points
indicated in the legend (see text). The lines separate two re-
gions where the convergence of the low-lying levels with M is
essentially reached or not.

Table 1. Slopes M0 of the best fits of the sets plotted in
Figure 2 (with same notations). † Only with L ≥ 28; ‡ Only
with L ≥ 24.

Data Set M0

GS XX 16.9 ± 0.4
1st Mz = 0 17.6 ± 0.4
1st Mz = 1 † 15.6 ± 0.4

GS H-D 13.2 ± 0.3
1st Mz = 0 15.0 ± 0.2
1st Mz = 1 ‡ 11.4 ± 0.3

properly a (quasi-)critical system with arbitrarily large L.
However, the promising feature of Figure 2 is that the var-
ious data sets approximately lie in a strip of the M − ln L
plot, characterized by a linear slope M̄0 = 15 ± 3. More
precisely, this value is an overall measure of the slopes of
the best-fit straight lines, reported in Table 1 for the six
sets considered. In other terms, if we invert the relation
between M and L, we find L∗(M) ∝ exp (M/M0), which
means that for fixed M we expect a good convergence of
the energies for L < L∗(M) (negligible truncation error,
in the language of [2]) and that the gain in increasing M is
exponential with a surprisingly small reference value M0

(in line with the first observations of White himself [13]).
Interestingly enough, the logarithmic behavior of M∗(L)
can be justified by taking equation (15) to be valid even at
critical points. There one expects ε → 0 and indeed confor-
mal invariance indicates that the finite-size level spacing
vanishes as ε = ε0/ ln L (with ε0 a constant) [9]. Now,
if we approximate the discarded weight of equation (13)
ignoring the degeneracy factor Dj , we readily get:

WM =
∑

j>M

Zj =
Z

1 − Z
ZM � ln L

ε0
e−ε0M/ lnL. (17)

Unfortunately, the effective accuracy gets poorer, by
one or two orders of magnitude [3], when we deal with
correlation functions. Keeping the errors in the low-lying
levels below the desired threshold may not be sufficient
so that we had to adopt an additional criterion to de-
cide whether the selected M is large enough or not. In
practice, we check systematically the properties of transla-
tional and reflectional invariance that we expect from the
symmetries of the Hamiltonian. In fact we have observed
that of one the “symptoms” for a too-small M is the vis-
ible (i.e. above numerical uncertainties) lack of some of
these invariances. To be more specific, if C(0, k) is a cer-
tain correlation function computed starting at j = 0, we
have always increased M (at the expense of L) until the
bound |C(L/2, L/2 ± k) − C(0, k)|/|C(0, k)| � 0.05 was
met for k varying from 0 to L/2, possibly with the excep-
tion of the ranges where C(0, k) is very small, say 10−6. In
Figure 3 we give an example with string correlation func-
tions (Eq. (16)) at the XX point. These should be trans-
lationally invariant but their numerical estimates depend
in fact on the starting point j because we have intention-
ally fixed a too-small value, M = 50. It is also interesting
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squares) string correlation functions for a chain of 64 sites with
PBC at the XX point (see text), computed with only M =
50 DMRG states. The empty symbols represent Oα

S (j = 0, r)
while the full ones represent Oα

S (j = 31, 31+r), with an evident
dependence on j.

to point out that in this example Ox
S(j, j + r) essentially

coincides with (−)r〈Sx
j Sx

j+r〉 (not plotted). We interpret
this coincidence with the onset of planar order at the BKT
transition. At the XX point both the transverse and the
longitudinal string order parameters are expected to van-
ish (Sect. 2 of [42]), and the fact that the minimum of the
x-data in Figure 3 is about ∼0.3 is to be interpreted as a
finite-size effect. In a similar way, a preliminary study of
the 1D Hubbard model with bond-charge interaction near
its critical points [43] indicates that in order to obtain ac-
curate correlation functions it is necessary to use a large
number of DMRG states (>500) and several finite-system
iterations. From the literature it turns out that this is a
general feature of electronic systems, like Hubbard models
and critical variants.

Finally, we mention the relevance for reference [44],
where the thermal behavior of the quantum 1D
and 2D S = 1 XX model is studied by means of the two-
time Green’s function method. The adopted decoupling
scheme requires the calculation of the on-site, nearest-
neighbor and next-to-nearest-neighbor ordinary correla-
tions in the x and z channel:

Cx,z
0 ≡ 〈(Sx,z

0 )2)〉, Cx,z
1 ≡ 1/2[〈Sx,z

0 Sx,z
1 〉 + 〈Sx,z

0 Sx,z
L−1〉]

Cx
2 ≡ 1/2[〈Sx,z

0 Sx,z
2 〉 + 〈Sx,z

0 Sx,z
L−2〉], (18)

(as in Eqs. (14) and (15) of [44] even if it is not clear if Cx
2

should include the on-site term with δ = −δ′ or not). It is
explicitly said that an exact term of comparison in 1D at
T = 0 would be needed in order to check more precisely
their methodology. Though in principle approximate, the
DMRG data can be regarded as a solid benchmark. We
have computed the five numbers above with M = 300
for L = 32, 48, 64, 80, 100. Having to do with short-range
non-vanishing quantities, the size dependence is very weak
(fourth decimal place or better) and an algebraic extrap-
olation to L → ∞ yields Cx

0 = 0.7577, Cz
0 = 0.4846,
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Fig. 4. Extrapolations of the gaps between the GS and the first
excited states within the indicated sectors of Mz at λ = 0.5.
The values for L → ∞ have been obtained through a quadratic
best fit in 1/L from the data at L = 32, 48, 64, 80 with 216
DMRG states. For graphical convenience, the various sets have
been turned into continuous curves using splines. The vertical
gray line indicates the point of intersection between the states
with Mz = 0 and Mz = 1, that is, the analogue of the Haldane
triplet at λ = 0.5.

Cx
1 = 0.5579, Cz

1 = −0.1778 and Cx
2 = 0.464 (not in-

cluding the on-site term). From a direct comparison with
Table 1 of [44] we see that with their choices of the decou-
pling parameters the largest discrepancy affects Cx

2 with
a relative difference of about 20%.

5 Examples and results

The quality of the numerical analysis of the critical prop-
erties depends heavily on the location of the critical points
of interest. At present, our study focuses primarily on the
transitions from the Haldane phase, for which it is con-
venient to fix some representative values of λ and let D
vary across the phase boundaries. This preliminary task
of finding Dc(λ) turns out to be crucial for subsequent
calculations and is divided into two steps.

First, one gets an approximate idea of the transition
points using a direct extrapolation in 1/L of the numer-
ical values of the gaps, computed at increasing L with a
moderate number of DMRG states. Clearly, one may want
to explore a rather large interval of values and so the in-
crements in D will not be particularly small (say 0.1).
An example of such a scanning at λ = 0.5 is presented
in Figure 4. Note that at (λ = 0.5, D � 0.6) one has a
first insight of the “cascade” of levels predicted by CFT
(Eq. (7) for L → ∞.)

As a second step, the analysis must be refined around
the minima of the curves ∆E-vs.-D with smaller incre-
ments in D and a larger value of M . According to FSS
theory ([45] and Appendix B), at the true critical point
(that is, in the TL) one should see that the data set-
tle to a constant in the log-log plot of the scaled gaps
vs. L. Figure 5 shows an example of such an inspection
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Fig. 5. H-D transition at λ = 0.5: Scaled gaps (between
|Mz = 0, b = 0〉 and |Mz = 1, b = 0〉) at L =
10, 12, 14, 16, 18, 20, 22, 24, 32, 48, 50 (with 400 DMRG states),
for the values of D indicated in the legend.

for λ = 0.5 and D varying about the H-D transition. It
is seen that the differences in the slopes of the various
curves are not so pronounced. Hence, from this plot we
have selected two candidates for the critical point Dc(0.5),
namely D = 0.62 and D = 0.65. At this stage we should
mention that in this type of transition the phenomenolog-
ical renormalization group (PRG) method [45] also typi-
cally yields a pair of (pseudo-)critical values at fixed L. In
this case, these two sequences of values seem to converge
to the point D = 0.62 (but in order to see convergence of
the curves up to L = 50 we had to use 400 DMRG states).
Unfortunately, this turns out to be an invalid tie-break be-
cause at this point the finite-size β-function (Eq. (37)) in-
creases with increasing L. This is shown in Figure 6, where
βL(0.65) is also plotted. The latter scales to zero with a
size-dependent slope that we calculate from equation (38).
The extrapolation to 1/L → 0 (and restricted to L ≥ 22)
then gives ν = 3.69±0.04. As discussed below this is not a
particularly good estimate of ν. Nonetheless, the location
of the critical point Dc(0.5) = 0.65 is quite close to the
value D = 0.635 obtained in reference [27] with a method
based on twisted boundary conditions and exact diagonal-
ization up to L = 16. In this sense, we suspect that the
difficulties encountered both with FSS and PRG (roughly
speaking, the “splitting” of critical points) are due to the
peculiar structure of the energy spectrum in this type of
transition. In particular, both sides of the transition are
massive and it is likely that with PBC we are faced with
the scenario proposed by Kitazawa [22]: In equation (35)
the constant C(1) for the first excited state could van-
ish and we have to consider a second-order expansion in
(D − Dc). Consequently, the values of the critical points
are determined via parabolic intersections that are more
sensitive to numerical uncertainties. Probably this is also
the reason why the scaling analysis of βL as used here per-
forms poorly. In fact, in our framework the best estimate
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Fig. 6. Finite-size β-functions for (λ = 0.5, D = 0.62) (open
squares), (λ = 0.5, D = 0.65) (full squares), (λ = 0.5, D =
−1.2) (open circles), (λ = 1, D = −0.315) (full circles) and
(λ = 1.185, D = 0) (full diamonds). All the numerical deriva-
tives have been calculated by means of centered differences
with δD = 0.01 for the first two cases (Haldane-large-D tran-
sition), δD = 0.005 for the second two and δλ = 0.005 for the
last one. Notice that the three lines for the transitions from
the Haldane to the Néel-like phase (Ising type) have essentially
the same slope, that is, the same ν (see also the discussion at
the end of Sect. 5).

of ν comes from another method, namely via the scaling
dimension of the mass-generating operator. According to
the discussion that follows, for (λ = 0.5, D = 0.65) we
find ν = 2.38, essentially in accord with the values given
in [24].

At the transition between the Haldane and the
Néel-like phase (henceforth denoted as H-N) these diffi-
culties regarding the location of the critical points and
the scaling to zero of βL are not experienced. Let us work
out in detail the λ-driven transition at D = 0, that has
been recently revisited [6] to argue that it does not belong
to the Ising universality class, as is generally accepted.
Taking advantage of previous results, we fixed D = 0 in
equation (12) and varied λ about 1.18. In Figure 7a we re-
port the L-dependent pseudo-critical values obtained by
solving numerically the PRG equation [45]:

[(L + δL)∆EL+δL(λpc) − L∆EL(λpc)]
δL

= 0 . (19)

Our best-fit critical value in the TL turns out to be
λc(D = 0) = 1.1856 (see caption), in agreement both
with [29] and with [6]. This point separates a gapfull
phase, where the scaled gap increases with increasing L,
from a gapless one (doubly degenerate GS), where it is ex-
pected that the scaled gap converges rapidly to zero [23].
The algebraic decay of βL is rather evident from Figure 6
and one can readily estimate ν = 0.987 ± 0.002 from the
slope of the linear best fit. This is the first indication that
the H-N transition belongs to the (2D) Ising universality
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Fig. 7. (a): PRG location of the Ising-like critical point λc

at D = 0. The pseudo-critical values of λ (full circles) are
plotted against the inverse of the middle size, (L+δL/2)−1, and
correspond to L ranging from 12 to 48 in steps of δL = 4 (see
Eq. (19)) using M = 405. The continuous line is a best-fit of the
form λc − AL exp (−L/LPRG) with A = 0.1185 and LPRG =
3.224. (b): Extrapolation (continuous line) of the GS energy
density (full circles) according to the form discussed in the
text.

class, as reported by various authors (see below our ar-
gument based on the combined use of CFT and DMRG).

Despite some difficulties in locating the critical points
of the H-D line on the basis of DMRG data, we are now
in position to suggest an extension in the usage of this nu-
merical method to approach the critical points of quantum
Hamiltonians. Taking advantage of the underlying confor-
mal theory that should be present in all these cases, we
focus on the finite-size energy spectrum, as summarized
by equations (7) and (9). Once the critical point is lo-

cated, we select a number of states that seem to become
degenerate with the GS in the limit L → ∞. Then we
consider L∆EL/2π and plot the data against 1/L to see
whether they settle to a constant, which represents the
associated scaling dimension d� multiplied by the veloc-
ity v. Actually, due to this pre-factor we have to imagine
a self-consistent procedure: Depending on the type of the
transition we have in mind (that is, depending on the con-
formal anomaly c), we stick on one or more levels in the
spectrum that have exactly d = 1. Hence the value for
1/L → 0 is nothing but v. Once the velocity is estimated,
one uses equation (9) to best fit the product cv and see if
the value of c and the hypothesis concerning the univer-
sality class are self-consistent or not.

To clarify the matter, let us return to the H-N tran-
sition, that is thought to be in the universality class of
the classical 2D Ising model with c = 1/2. This can be
considered as the paradigm of minimal models in CFT
and the corresponding quantum field theory is that of a
massless Majorana fermion. Apart from the identity (with
zero scaling dimensions) one has only two primary op-
erators with ∆h = 1/16 and ∆T = 1/2. In addition,
modular invariance [46] demands that the conformal spin
(∆−∆̄) of the combinations that enter the partition func-
tion (on the torus) must be an integer (zero in this case).
Hence we are left with two nontrivial primary operators
of scaling dimensions dT = 1 and dh = 1/8, that are
interpreted as energy and spin density, respectively. The
former is responsible for the variations away from the crit-
ical temperature and so the correlation length index is
given by ν = 1/(2 − dT ) = 1. The latter, from equa-
tion (8), gives the decay exponent of the spin-spin cor-
relation function ηz = 1/4 at the critical point. At the
same time, being ν = 1 (see the following equations (39)
and (40) in Appendix B), one determines also the expo-
nent β = dh = 1/8, describing the opening of the magne-
tization away from criticality.

The GS energies at various L for the critical point
(λ = 1.1856, D = 0) found above are plotted in Figure 7b.
We have seen that in the range L = 12 − 56 the small
deviations from −1.5 are accurately fitted by the form
EGS

L /L = e∞ − cvπ/6L2 − A/L3/2 exp (−L/ξ1), with
e∞ = −1.50093, cv = 1.327, ξ1 = 3.48 and A = 1.251.
This dependence can be justified by recalling that the lat-
tice model is mapped onto a CFT (yielding Eq. (9)) for
the critical sector, plus a residual Hamiltonian that ac-
counts for the massive levels. The exponential term is what
one expects in a massive regime [47], and we observe that
the length ξ1 multiplied by the finite gap with the sector
|Mz = 1|, ∆E(1) = 0.754, yields v1 = 2.62, a typical value
of velocity (close to the one found below). In fact, at this
stage we observe a nontrivial feature: the massless modes
described by the CFT seem to be associated only with
the levels within Mz = 0, while those with Mz �= 0 main-
tain a finite energy gap in the TL. Hence, the reference
state for the calculation of v will be the second excited
state in Mz = 0, corresponding to conformal dimensions
(1/2, 1/2). Using equation (10) we determine a (CFT) ve-
locity that extrapolates to v = 2.676 ± 0.001 (see Fig. 8),
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Fig. 8. Scaled gaps, divided by 2π, plotted vs. 1/L at the
Ising transition (λ = 1.1856, D = 0). Points represent the nu-
merical values obtained with multi-target DMRG runs (L =
20, 24, 28, 32, 36, 40, 44, 48, 56, 64, 72, 80 with M = 243) collect-
ing eight excited states within Mz = 0. Continuous lines the
are best-fit whose intercepts are given in Table 2, together with
the theoretical predictions of the scaling dimensions (the labels
on the right indicate the multiplicities).

and the resulting central charge, c = 0.4959±0.0006, lead
us again to the 2D Ising universality class as in [29] and
references therein. An even more stringent confirmation
comes from Figure 8, that illustrates the core of the multi-
target method proposed here. In Table 2 we compare the
theoretical values with the numerical estimates of the scal-
ing dimensions (second column) obtained by taking the
ratios between the intercepts at 1/L = 0 of the data set
in Figure 8 and the velocity pre-factor v = 2.676. These
intercepts, in turn, are determined using power-law fits to
eliminate the residual dependence on L in a fashion sim-
ilar to that of [30]. The fits are carried out in the range
L ≥ 36 because of the shoulder at L ∼ 40 in Figure 7
that signals the onset of the scaling regime. All the mul-
tiplicities are met, even if with DMRG calculations alone
we are not able to classify the four degenerate states in
terms of the secondary indices. The fourth column con-
tains the total momentum/conformal spin expected from
equation (5). Question marks indicate that the conformal
continuum theory predicts 0 also for those cases that are
expected to have |Q| = π [23]. We suspect that this is due
to the correspondence between the original spin model
and the field theory that maps the discrete AF structure
(|Q| = π) onto the low-momentum sector. Indeed, for the
CFT to give |Q| = π a secondary index equal to L/2
would be needed, and this would yield a nonzero energy
gap in the TL. The overall agreement is good (1% in the
worst cases) and the complete structure of the spectrum
of the c = 1/2 minimal model is reproduced (only the rel-
evant and marginal cases with d ≤ 2 are reported). Note
that all the marginal operators have nonzero momentum

Table 2. Spectrum of theoretical (dCFT = ∆+∆̄+sec. indices)
and numerical (see details in the text) conformal dimensions
at the Ising transition of Figure 8.

dCFT dnum Secondary Q

[× multiplicity] Indices

0 [×1] (0,0) 0

1/8 [×1] 0.1229 ± 0.0004 (0,0) 0 (or π?)

1 [×1] 1 (0,0) 0 (or π?)

9/8 [×2] 1.1185 ± 0.0008 (1,0) ±2π/L

1.1218 ± 0.0008 (0,1) ∓2π/L

2 [×4] 2.014 ± 0.005 (2,0) ±4π/L

2.025 ± 0.005 (0,2) ∓4π/L

2.018 ± 0.005 (1,0) ±2π/L

2.018 ± 0.005 (0,1) ∓2π/L

and so they cannot represent a valid perturbation to the
continuum Hamiltonian because they would break transla-
tional invariance. The absence of marginal operators sug-
gests that each point of the H-N transition corresponds to
the same c = 1/2 theory and the line in the phase dia-
gram is “generated” by the mapping of the discrete spin
model onto the continuum CFT. Moving along the H-N
line we expect only a change in the non-universal quanti-
ties like v, e∞ and the values of the critical anisotropies
themselves. We have seen that this is indeed the case, at
least for these other two points: [λ = 0.5, Dc(0.5) = −1.2]
(left part of Fig. 4) and [λ = 1, Dc(1) = −0.315] (both
found by fixing λ and varying D). For the former we
get e∞ = −2.00120, v = 2.44 and c = 0.5008 ± 0.0008,
while for the latter we get v = 2.65, e∞ = −1.62651 and
c = 0.498 ± 0.002. The corresponding gap exponents are
estimated from the decay of βL(−1.2) and βL(−0.315),
with the results ν = 1.023± 0.009 and ν = 1.003± 0.006,
respectively. Notice that in Figure 6 the two points have
essentially the same β-function. After all, equations (35)
and (37) give β−1

L (gc) = C(1)L1/νσc/(2 − ν−1), where σc

is the derivative of (g − gc) with respect to the lattice pa-
rameter that is varied. Hence, if in Figure 6 we wish to
compare the β-functions of Ising type computed at fixed λ
with those computed at fixed D, we should multiply the
latter by the (local) slope of H-N line dD/dλ � 1.697. We
have checked that with a vertical shift of ln 1.697 = 0.5289
the β-function at (λ = 1.185, D = 0) collapses onto the
other two, thereby indicating that moving along the line
the c = 1/2 conformal structure is maintained.

Concerning the discrepancy with reference [6], we
should mention that a distinctive point of their analy-
sis is the extrapolation for M → ∞. On the other hand,
we feel that the numerical procedure contains two weak
points. First, the conclusion that ν is not sufficiently close
to 1, and the consequence that the effective dimension-
ality is not 2, are drawn from the estimates of the cor-
relation length using a pure exponential law that is not
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completely justified. According to our experience, having
a multi-target code at one’s disposal, it would be better to
read the values of ν directly from the excitation gap or the
scaling dimension. The second and more important point
is the usage of the infinite-system algorithm. In Sections 1,
3 and 4 we have given indications that this may be a risky
procedure if one aims at very precise quantitative results,
and that the finite-system algorithm should be preferred
(see also Refs. [2,19] regarding this question).

6 Concluding remarks

The aim of the this paper was to give a detailed expla-
nation of the numerical method used to derive the results
of reference [17] and, more generally, to discuss how one
can circumvent some of the problems of the DMRG close
to criticality. The ideas are explicitly worked out taking
some representative point in the λ−D phase diagram for
the Hamiltonian of equation (12). In Section 4 we have
argued that close to the transition lines from the Haldane
phase (at least the ones with c = 1) the convergence is
controlled by a characteristic length L∗(M) that appears
to be a consequence of the truncation to the M states with
the largest weights in the block density matrix ρb. This
fact is in line with similar results by other authors [2,4,5],
and this probably lies at the heart of the problem: in the
TL the physical system behaves in a critical way but the
DMRG procedure introduces a spurious length so that the
numerical outcome is no longer scale invariant.

The method that we are suggesting is based on the
finite-system DMRG algorithm in order to reduce as much
as possible the (environment [2]) errors and has to be ap-
plied in an intermediate range of L, not too small so that
the signatures of scaling are visible but not too large as
compared to L∗(M). Then we make use of powerful finite-
size scaling predictions, coming from CFT, to extract in-
formation on the effective continuum model, like the “spin
velocity” and the central charge, from the spectrum of low-
lying excitations. The latter can be computed, within the
DMRG, by taking ρb as the average of the matrices asso-
ciated with a given number of excited states that, in turn,
are obtained with a Thick-restart variant of the Lanczos
method [15].

We think that the methods discussed here should apply
also to the study of the critical behavior of other 1D quan-
tum systems, such as Hubbard models and their general-
izations [48–51].

Finally, in Section 5 we have reported some examples of
c = 1/2 transitions between the Haldane and the Néel-like
phase. In particular, we have re-examined and confirmed
the 2D Ising nature of the critical point at D = 0 [29],
which was the cause of a recent controversy [6].

We are grateful to L. Campos Venuti, E. Ercolessi, G. Morandi,
F. Ravanini, M. Roncaglia and S.-W. Tsai for their useful in-
terventions during the preparation of the paper. This work was
partially funded by the Italian MIUR, through COFIN projects
prot. n. 2002024522 001 and 2003029498 013.

Appendix A: Thick-restart Lanczos method

Let us consider a n × n real symmetric matrix H repre-
senting the Hamiltonian operator of a quantum system in
a given orthonormal basis. We are interested in the low-
est eigenvalues, {λ}, and corresponding eigenvectors, x,
defined by the equation Hx = λx (λ real, x ∈ R

n). If
the matrix H is large and only a small number of eigen-
values are wanted, a projection-based method is generally
used [52,53]. In these methods one usually builds orthogo-
nal bases and then performs the Rayleigh-Ritz projection
to extract the approximate solutions. When the matrix
is symmetric, the Lanczos method is the most commonly
used algorithm, taking advantage of the fact that the ac-
tual matrix to diagonalize can be cast in tridiagonal form.

Another method used for large matrices is the
Davidson one (and its variants) for which, however, the
tridiagonal form is not assured. When the Hamiltonian
matrix is dominated by the diagonal elements, as occurs in
quantum chemistry, the Davidson-Jacobi gives very good
results [53]. This does not necessarily hold for a quantum
spin system in the basis of eigenstates of local Sz

j and the
preconditioner (especially during the initial steps of the
infinite-system algorithm) can break some of the symme-
tries of the Hamiltonian. Given that the choice of a partic-
ular method depends on the physical system under study,
in this appendix we focus on the characteristic points of
the Lanczos method used for our numerical results.

Given a starting vector r0 ∈ R
n, an orthogonal se-

quence of vectors qi, i = 1, 2, . . . is generated recursively
from the relations:

{
q0 = 0
β0 = ‖r0‖ (20)






qi = ri−1
βi−1

αi = 〈qi, Hqi〉
ri = Hqi − αiqi − βi−1qi−1

βi = ‖ri‖ , i = 1, 2, . . .

(21)

The vectors qi, called Lanczos vectors, form an orthonor-
mal basis for the Krylov subspaces:

Km = span
{
r0, Hr0, . . . , H

m−1r0

}
= span {q1, . . . ,qm} ,

(22)
and satisfy the relations:

Hqi = βi−1qi−1 + αiqi + βiqi+1, (23)

which define a tridiagonal matrix, Tm, as a representation
of H in Km:

Tm =









α1 β1

β1 α2

. . .
αm−1 βm−1

βm−1 αm









. (24)

The diagonalization of Tm, with m = 1, 2, . . . , gives eigen-
values and eigenvectors, called Ritz values and Ritz vec-
tors, as approximate solutions to the original problem.
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The computation of an eigenvalue with good accuracy of-
ten requires a large number of iterations and on most ma-
chines there is not enough memory to store all the Lanczos
vectors. It is necessary to limit the number m of generated
vectors and restart the procedure. Since the algorithm de-
fined by equations (20) and (21) can start with one vec-
tor r0, the usual way is to use the computed Ritz vector,
if only one eigenvalue is wanted. If more than one eigen-
value is desired, we can freeze the converged ones and
combine the other vectors into one starting element [53].
Other methods (Davidson-Liu or block Lanczos) are based
on adding a block of states at each step but, of course,
they require more computational resources. Typically, a
restarting scheme needs significantly more iterations to
compute a solution, but it saves memory usage. The algo-
rithm developed by Wu and Simon [15], summarized in the
following, has the advantage of adding only one vector at
every step, essentially preserving the tridiagonal structure
of the projected matrix.

The Thick-restart Lanczos method is based on the fol-
lowing observation: let us consider an arbitrary element
of Km:

q̃ =
m∑

j=1

yjqj , yj ∈ R (25)

from relation (23) we have (setting y0 = 0):

Hq̃ =
m∑

j=1

(βj−1yj−1 + αjyj + βjyj+1)qj + ymβmqm+1,

(26)
so that the residual, r = ymβmqm+1, is always paral-
lel to qm+1 independently from the vector q̃ in Km and
has the same direction of the residual rm computed from
equation (21) and defining qm+1. This fact suggested to
Wu and Simon a suitable restarting scheme.

When restarting, one has first to determine an appro-
priate number of Ritz vectors, say k (usually greater than
the number of wanted eigenvalues):

q̃i =
m∑

j=1

qjy
(i)
j , i = 1, . . . , k, (27)

corresponding to the Ritz values λi. The chosen Ritz vec-
tors contain the best approximations available for the wan-
ted eigenvectors. Since the matrix Tm is symmetric, there
is no reason to use any basis set different from its eigen-
vectors:

Tmy(i) = λiy(i), i = 1, . . . , k (28)

(We denote with a tilde the quantities after the restart, to
distinguish them from the corresponding ones before the
restart.) Using these k vectors, the projected matrix of H ,
T̃k, is diagonal and the vectors satisfy the relations:

Hq̃i = λiq̃i + y(i)
m βmq̃k+1 , i = 1, . . . , k, (29)

with q̃k+1 = qm+1. So we can enlarge the basis
{q̃1, . . . , q̃k} with the vector q̃k+1 and, using the sym-
metry of the matrix H , the vector q̃k+2 can be computed

by the residual:

rk+1 = Hq̃k+1 − α̃k+1q̃k+1 −
k∑

j=1

βmy(i)
m q̃j . (30)

Correspondingly, the matrix T̃k is extended by one row
and one column into the matrix T̃k+1. The latter is not
tridiagonal as the original Tm but further steps follow the
three-terms relations (23), defining α̃i and β̃i for i = k +
2, k+3, . . . , m, and at step m > k+1 we have the following
form for T̃m:

T̃m =













λ1 β̃1

. . .
...

λk β̃k

β̃1 . . . β̃k α̃k+1 β̃k+1

β̃k+1 α̃k+2

. . .













(31)

with β̃i = βmy
(i)
m , i = 1, . . . , k. Since the vectors in the

new subspace generated by {q̃1, . . . , q̃m} have the same
property that the residual is always parallel to q̃m+1, the
procedure can be repeatedly restarted, until we find a good
convergence of the wanted eigenvalues. The matrix Tm is
no longer tridiagonal after the first restart, but it can still
be stored and diagonalized in an efficient way. It is easy to
arrange the algorithm so that qi and q̃i occupy the same
memory locations.

We can summarize saying that the restarting scheme
with k Ritz vectors qi (we now drop the tilded notation),
and a residual rk satisfying the rule:

Hqi = λiqi + βiqk+1, (32)

with qk+1 = rk/‖rk‖, is composed by an initialization:





αk+1 = 〈qk+1, Hqk+1〉
rk+1 = Hqk+1 − αk+1qk+1 −

∑k
j=1 βjqj

βk+1 = ‖rk+1‖
(33)

followed by typical Lanczos iterations (Eq. (21)) for i =
k + 2, k + 3, . . . , m.

This concludes our description of the Thick-restart
Lanczos algorithm. We refer to the original paper [15] for
a detailed discussion of the errors and precision of the
method.

Appendix B: Brief survey of FSS theory

Ideally, we should locate the critical points of a quan-
tum system by looking at the smallest energy gap, ∆E,
as a function of a (relevant) parameter g and identify gc

through the condition ∆E(gc) = 0. For an algebraic tran-
sition the critical index ν controls the opening of the gap,
∆E ∝ |g − gc|ν . However, when the critical point is ap-
proached numerically we encounter two related problems.
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First, the system’s size is necessarily finite and a true
phase transition is forbidden. Second, if we are able to
deal with sufficiently large systems close to gc, the energy
gap may become so small as to be comparable with the
errors introduced by the algorithm (or, ultimately, by the
machine). Hence we need a prescription to infer the loca-
tion of the critical point from nonzero values of ∆EL at
finite L.

In FSS theory [24,45,54] one usually invokes the fol-
lowing ansatz (quantum Hamiltonian notations):

∆EL =
1
L

F (ζ), ζ ≡ L1/ν |g − gc|, (34)

so that the scaling variable ζ covers these two regimes

(a) ζ → 0 for g → gc at fixed L. In this regime we should
see a finite system at the infinite-size critical point.
Since ∆EL is in fact an inverse correlation length
ξL, we expect the latter to be as large as possible,
that is to say ∆EL ∝ L−1. Compatibility with equa-
tion (34) then requires F (0) �= 0. This is exactly the
case for which the continuum description of CFT ap-
plies (Sect. 2). Hence, recalling that the scaling di-
mension of the gap-generating operator is (2 − ν−1),
we may write F (0) = 2πv(2 − ν−1) and expand F (ζ)
in a McLaurin series for ζ � 1:

∆EL =
2πv

L

[
(2 − ν−1) + C(1)ζ + C(2)ζ2 + . . .

]
.

(35)
(b) ζ → ∞, which means (L/ξL)1/ν 
 1. This regime

mimics the TL, in the sense that ξL is large but fi-
nite because the system is slightly off-critical and L is
sufficiently large so that scaling laws appear. Hence L
must effectively cancel in equation (34), leaving just
|g − gc|ν . This is possible if:

F (ζ) ∼ ζν ζ 
 1. (36)

From (a) we derive the way to locate the critical points
through FSS: Plot ln (∆EL) vs. ln L and look for the value
of g that best gives a straight line with slope −1. Actually,
we can be even more severe by looking for slope 0 in the
curves of the scaled gaps L∆EL. As far as the index ν
is concerned, one may consider the finite-size β-function,
β−1

L (g) ≡ ∂ ln (∆EL)/∂g, evaluated at g = gc as deter-
mined above (apart from the sign):

βL(gc) = [F (ζ)/F ′(ζ)]ζ=0L
−1/ν , (37)

where F ′ denotes the derivative with respect to ζ
and F ′(0) is also assumed to be nonzero. In principle
βL(gc) should vanish with an exponent 1/ν that repre-
sents the asymptotic slope in log-log scales. Alternatively,
since the scaling region may be reachable only for very
large L, one can calculate the discrete logarithmic deriva-
tive through a size increment L → L + δL:

1
νL

≡ − ln βL+δL(gc) − ln βL(gc)
ln (L + δL) − ln L

, (38)

and this should converge to 1/ν when L → ∞.
Finally, the ansatz (34) can be generalized to other

physical quantities that behave as Q(g) ∝ |g − gc|νQ near
the critical point:

QL(g) = L−zQFQ(ζ), (39)

with the same scaling variable ζ and scaling exponent zQ.
As above, in the critical regime (a) ζ → 0 we shall require
FQ(0) �= 0, while in the off-critical regime (b) the scaling
exponent νQ emerges provided that FQ ∼ ζνQ for ζ → ∞,
and zQ = νQ/ν. In many cases, Q2 is a squared order
parameter given by the asymptotic value of a certain cor-
relation function, 〈OQ(0)OQ(r)〉, that slightly away from
the critical point behaves as:

〈OQ(0)OQ(r)〉 ∝ GQ(r/ξ)
r2dQ

, (40)

dQ being the scaling dimension of OQ. At this stage we can
make the scaling argument of Ginsparg (Sect. 5.1 of [16])
evaluating equation (40) just at the correlation length it-
self, r = ξ ∝ |g − gc|−ν thereby having 〈OQ(0)OQ(ξ)〉 ∼
Q2 ∼ GQ(1)|g − gc|2νdQ . Hence we find the scaling law
dQ = νQ/ν, that tells us that zQ in equation (39) is noth-
ing but the scaling dimension of the operator associated
with the order parameter Q. In reference [17] we have
used this property to derive the decay exponents of ordi-
nary (transverse channel) and string (z-channel) correla-
tion functions in c = 1 phases by applying equation (39)
to the corresponding Néel and string order parameters
evaluated at half chain.
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3. Ö. Legeza, J. Röder, B.A. Hess, Phys. Rev. B 67, 125114

(2003)
4. M. Andersson, M. Boman, S. Östlund, Phys. Rev. B 59,
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